

Metabolomics: quantifying the phenotype



# Metabolomics Promises Quantitative Phenotyping



## Metabolomics publications in Pubmed



## History of metabolomics

#### Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography

(orthomolecular medicine/vitamins/controlled diet)

LINUS PAULING\*, ARTHUR B. ROBINSON\*, ROY TERANISHI†, AND PAUL CARY\*

\* Department of Chemistry, Stanford University, Stanford, California 94305; and † Western Regional Laboratory, U.S. Department of Agriculture

Contributed by Linux Pauling, July 29, 1971

- metabolomics developed by Pauling in 1970
- the term metabolomics first used in 1998
  - Oliver SG et al (1998). Trends Biotechnol 16:373
- Metabolomics Society founded 2004
- January 23rd, 2007 first draft of the human metabolome "completed"



#### **Approaches to Investigating the Metabolome**

- Metabolic Fingerprinting
  - Pattern recognition to classify samples by shifts in "global" metabolite composition.
- Metabolic Targeting
  - Quantification of a small number of known compounds.
- Metabolic Profiling
  - Quantification of a group of related compounds or metabolites within a specific metabolic pathway.



#### **Metabolomics**

 Quantification of "all" metabolites at a defined time under specific environmental conditions.













## The Pyramid of Life



From the Human Metabolome Project: http://metabolomics.ca/

#### What is metabolomics?

A comprehensive quantitative analysis of all metabolites in the metabolome under a given set of conditions

#### What is a metabolite?

- Substance involved in metabolism
- A by-product of the breakdown of either food or medication by the body
- Compound produced from the chemical changes of a drug in the body
- Any compound detected in the body <1500 Da</li>

Substance produced in or by biological processes

## What is a metabolite?

- peptides
- oligonucleotides
- sugars
- nucleosides
- organic acids
- ketones
- aldehydes
- amines
- amino acids

- lipids
- steroids
- alkaloids
- drugs
- xenobiotics

## Why Are Metabolites Relevant?



**Metabolites are the Canaries of the Genome** 

# Why measure metabolites?

- Simple answer
  - Readout of underlying molecular network
  - Infer enzyme activities
  - Reflective of any observable phenotype
  - Diagnostics, functional genomics
- Not so simple answer:
  - Not victims, but actors
  - A cause somewhere in the network can have effects elsewhere

#### Use of metabolomic approaches: 'Dectect the unexpected'



Pathway discovery and functional genomics

#### 'Complexity'





Metabolome cannot be computed from genome

#### Metabolomics is a branch of

#### **Analytical Biochemistry**

Analytical biochemistry is the analysis of material samples to gain an understanding of their biochemical composition and structure.

Qualitative analysis seeks the presence of a given functional group or organic compound in a sample.

Quantitative analysis seeks the amount of a given compound in a sample.



#### separation types:

- (a) physicochemical (b) biochemical properties
  - (a) electrical charge, lipophilicity, hydrophilicity, volatility, size...
  - (b) binding, metabolism, precipitation...

#### detection types:

- (a) physicochemical (b) biochemical properties
- (a) mass, vibration, rotation, magnetic resonance, radiation absorption/fluorescence/scattering redox potential, thermal conductivity, refractive index...
  - (b) antibody, protein folding/binding→FRET

# Metabolomics experiment

- 1. Extraction from biological tissues
- 2. Separation
  - chromatography
- 3. Detection
  - mass spectrometry
- 4. Identification & quantification

## **Metabolomics methods**

### **Separation methods**

- Gas chromatography (GC)
  - one of the most widely used and powerful methods
  - high chromatographic resolution
  - compounds must be volatile (or derivatized)
- High performance liquid chromatography (HPLC)
  - lower chromatographic resolution
  - wider range of analytes can be analyzed (polar)
- Capillary electrophoresis (CE)
  - higher theoretical separation efficiency than HPLC
  - suitable for wider range of metabolites than GC
  - most appropriate for charged analytes (electrophoretic technique)

## Metabolite detection techniques

#### **Physical Property**

- mass
- rotation, vibration
- hv absorbance
- hv emittance
- spin
- volatility
- hydrophobicity
- charge
- size

#### **Method**

- mass spectrometry
- infrared spectrometry
- ultraviolet-visible spectroscopy
- fluorescence spectroscopy
- nuclear magnetic resonance
- gas chromatography
- liquid chromatography
- capillary electrophoresis
- size-exclusion chromatography

# Gas chromatography

#### Advantages

- Very high chromatographic resolving power
- Good selection of stationary phases
- Wide dynamic range

#### Disadvantages

- Compounds must be sufficiently volatile (derivatized)
- Compounds must be thermally stable
- Limited to nonpolar and slightly polar molecules









# Liquid chromatography

#### Advantages

- Capable of analyze wide range of metabolites
- (thermally labile, polar, high molecular mass)
- Good selection of stationary phases

#### Disadvantages

- Fragmentation rules not well-established
- No MS fragmentation libraries
- Limited resolution (but UPLC is an improvement)



# HPLC high performance liquid chromatography









### **Metabolic Fingerprinting – MS Analysis**



#### ozone treated



Online SPE-HPLC-TOF-MS analysis of 20 µL bronchiolar alveolar lavage fluid

## **NMR**

#### Advantages

- No sample separation necessary
- Essentially universal detector
- Non-destructive

#### Disadvantages

- Low sensitivity
- Results difficult to interpret
- Decreased quantification
- Expensive





## Why NMR?



Mixture separation by HPLC (followed by ID via Mass Spec)



Mixture separation by NMR (simultaneous separation & ID)

**Chemical Shift Chromatography** 

# NMR Metabolic Profiling and Drug Toxicology



**Principal Component Analysis** 

## **Mass spectrometry**

- chemical analysis technique to measure the mass of molecules by ionizing, separating & detecting ions according to their mass-to-charge ratios.
- involves the study of ionized molecules in the gas phase with the aim of one or more of the following:
- Molecular weight determination
- Identify unknown compounds
- Structural characterization
- Qualitative and quantitative analysis of mixtures
- Carbon dating

- What is ionization?
- producing an electrically charged molecule from a neutral molecule by adding protons or removing electrons.
- Why is ionization of sample required in mass spectrometry?
- sample to be analyzed by mass spectrometry must be ionized to separate ions according to their mass-to-charge ratio
- What is the "mass-to-charge" ratio of an ion?
- The mass of the ion divided by the charge on the ion.
- The charges on an ion are always positive integers (1, 2, 3, ...).
- Charged ions are produced by ionization.
- lons charged by adding a proton or by removing an electron.
- For example:
  - molecule  $C_2H_6$  with mass of  $(2 \times 12) + (6 \times 1) = 30 \, Da$ .
  - can acquire a charge of 1 unit in 2 ways:
    - losing an electron (mass-to-charge ratio = 30/1 = 30)
    - accepting a proton (mass-to-charge ratio = (30+1)/1 = 31)

## What is mass spectrometry????



### Ion sources used in metabolomics

### **HPLC**

ESI – electrospray ionization (Nobel prize in 2002)

API – atmospheric pressure ionization

MALDI – matrix-assisted laser desorption ionization

ICP – inductively coupled plasma

### GC

EI – electron impact ionization

CI – chemical ionization





### Three most common types of ionization

**MALDI-MS** 

Matrix Assisted Laser Desorption Ionization

LC/ESI-MS

**Electrospray Ionization** 







#### **Electron Impact Ionization**



### The basic unit of mass filtering is a quadrupole

•The quadrupoles are 4 parallel rods controlled by DC voltage & an RF potential.

•lons with specific *m/z* ratios separated by controlling the RF potential.



### Types of Mass Spectrometers ('ion separators')







### mostly without MS/MS fragmentation

### mostly with MS/MS fragmentation













# Qualitative analytical biochemistry: metabolite identification in LC/MS



# Qualitative analytical biochemistry: metabolite identification in GC/MS



cholesterol TMS mw=458 Da

# Metabolomics experimental design

- If classification is most important aim, get as many samples as possible & run fingerprints!
- If you have no clue what to expect, combine GC/MS, LC/MS and 2D-NMR data
- IF you have valid hypotheses in mind, use metabolite profiling (e.g. lipidomics)
- Use more than one statistical tool to be certain
- Biological variance has different sources, but is usually larger than analytical error
- Metabolomics is suggestive of phenotype

### Metabolomic experiment flowchart







#### (A) Glycerophospholipid Structure



#### (B) Theoretical number of molecular lipids

| Type of lipid                 | # of molecular lipids in class |
|-------------------------------|--------------------------------|
| 40 common fatty acids         | 40                             |
| 40 fatty acid acyl-CoA        | 40                             |
| Monoacylglycerols             | 120                            |
| Diacylglycerols               | 4800                           |
| Triacylglycerols              | 64000                          |
| Phospholipids (6 classes)     | 9600                           |
| Ceramide & Sphingomyelin      | >400                           |
| Glycosphingolipids            | >100000                        |
| Cholesterol/Cholesterol ester | 41                             |
| Total #                       | ~ 180000                       |





## Metabolic Profiling: The Possibilities

- Toxicology Testing
- Clinical Trial Testing
- Fermentation Monitoring
- Food & Beverage Tests
- Nutraceutical Analysis
- Drug Phenotyping
- Water Quality Testing
- Petrochemical Analysis

- Genetic Disease Tests
- Nutritional Analysis
- Clinical Blood Analysis
- Clinical Urinalysis
- Cholesterol Testing
- Drug Compliance
- Dialysis Monitoring
- Forensics

## **Human Metabolome Database**



www.hmdb.ca

### More than one method needed for metabolomics

- NMR or MS fingerprinting
- Very robust, 500-10,000 variables high-throughput
   5-50 identified compounds

GC/MS

 Robust, ~500-1000 primary metabolites <550 Da high-throughput 50-200 identified compounds

LC/MS

 Not as robust, ~50-70 secondary metabolites <2500 Da low-throughput 20-100 identified compounds

## Exciting methodology that can provide quantitative phenotyping

Important step in the omics cascade

Leads to personalized medicine

### What is the pay off from metabolomics?

**Mechanistic Insight into Biological Processes** 

**A Step Towards Personalized Medicine** 





**Metabolic Response** 



And we do not want to be the same!!!!



# Thank you for your attention

